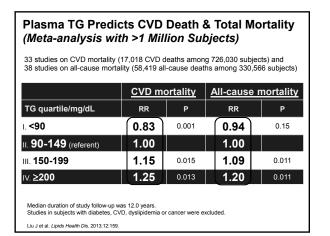
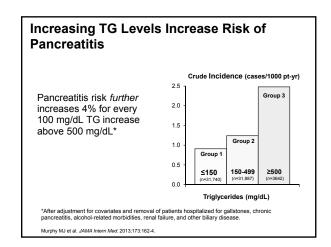
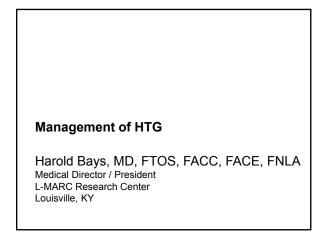

Learning Objectives


- Discuss the etiology, diagnosis, and risk assessment of hypertriglyceridemia (HTG)
- Relate the clinical and genetic evidence for the association between elevated triglycerides (TG) / remnant lipoproteins and atherosclerosis
- Describe the anti-atherosclerotic/anti-inflammatory properties of TG-lowering agents, with a focus on prescription omega-3 fatty acids (FA)
- Apply evidence-based guidelines to lifestyle and therapeutic approaches for managing patients with HTG


Association Between Triglycerides and Atherosclerosis/Pancreatitis

Michael Miller, MD, FACC, FAHA Professor of Cardiovascular Medicine, Epidemiology & Public Health University of Maryland School of Medicine Director, Center for Preventive Cardiology University of Maryland Medical Center Baltimore, MD



inically useful details xercise, †Saturated fat, †glycemic index imple sugars (fructose>>glucose, etc.) & jdietary fiber pecially †visceral adiposity pecially if glycemia is poorly controlled
imple sugars (fructose>>glucose, etc.) & idietary fiber pecially †visceral adiposity
pecially tvisceral adiposity
pecially if glycemia is poorly controlled
ot adequately controlled with thyroid replacement therapy
tiretroviral regimens (for HIV) me phenothiazines and 2nd-generation antipsychotics nselective beta-blockers lazide diuretics al estrogen, tamoxifen uccoorticoids, isotretinoin
nanol; Marijuana (†Apo C-III)

NLA: Targets of Therapy – Triglycerides

- An elevated TG level is not a target of therapy per se, except when very high (≥500 mg/dL)
- When TG levels are between 200–499 mg/dL, the targets of therapy are non-HDL-C and LDL-C
- When the TG concentration is very high (≥500 mg/dL, and especially if ≥1000 mg/dL), reducing the concentration to <500 mg/dL to prevent pancreatitis becomes the primary goal of therapy

Jacobson TA et al. J Clin Lipidol. 2014;8:473-88.

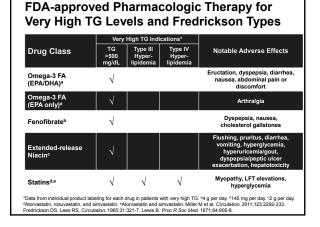
How are high triglyceride levels treated?

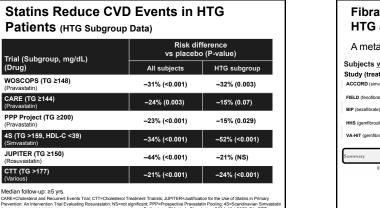
High TG levels are often associated with other heart disease risk factors

- · Obesity
- · Physical inactivity
- · Diabetes mellitus
- High blood pressure
- · Elevated cholesterol levels
- · Low HDL-C levels

Treating Underlying Factors of HTG

- History of nutrition (calories, fat, sugar, alcohol, body weight trends) and physical activity (frequency, type, intensity)
- · Measure BMI and waist, TSH, A1c, urinary protein
- Prescribe low-calorie, low-sugar, low-to-no alcohol, and low-fat plan. Recommend patient-appropriate physical activity plan.
- · Treat underlying diseases
- · Discontinue TG-raising medications or supplements

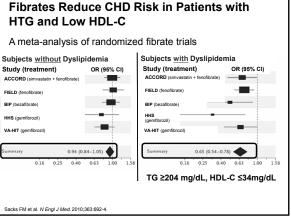

Bays HE. In: Kwiterovich PO Jr, ed. The Johns Hopkins Textbook of Dyslipidemia 1st ed. Lippincott Williams & Wilkins;2010:245-57.

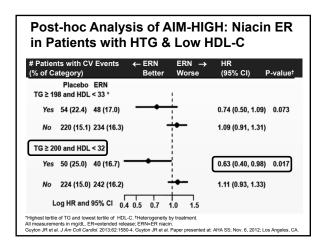

Lifestyle and Diet Can Have Big Effects on Hypertriglyceridemia	
Diet / Lifestyle Change	Lipid Profile Change
Weight loss in overweight or obese individuals (5–10%)	
Diet ↑ Fruits, vegetables & low-fat dairy ↓ Total carb, added sugars ↓ Saturated fats	20% - 50% Reduction in TG possible with Lifestyle
Exercise Brisk 30-min walk, 3x/wk	Interventions
Miller M et al. J Am Coll Cardiol. 2008;51:724-30. Sampson UK et al. Curr Atheroscler Rep. 2012;14:1-10.	

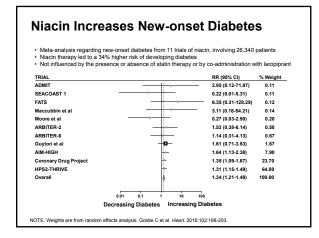
Physical Activity and Lipid Levels in Patients with Overweight or Obesity TG reduction is the first and most notable effect of increased physical activity on the lipid profile - Sustained 3%-5% weight loss is likely to result in clinically meaningful TG decreases - Degree of effect is proportional to baseline TG · HDL-C increases require extensive activity - ~700-2000 kcal/week (~30 min/day, moderate intensity) • LDL-C usually does not change - However, weight loss via exercise may decrease levels

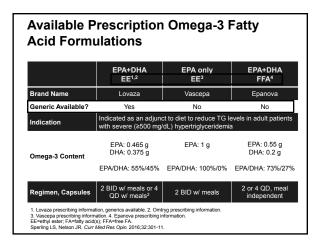
Bays HE et al. *J Clin Lipidol.* 2013;7:304-83. Couillard C et al. *Arterioscler Thromb Vasc Biol.* 2001;21:1226-32. Jensen MD et al. *J Am Coll Cardiol.* 2014;63:3029-30.

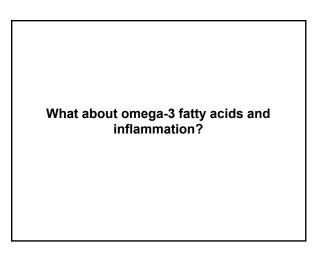
1,840 2,150 1,740 1,060
1,740 1,060
1,060
1,280
2.000
2,130
1.850
1,200
400
470
1.180
1,500
280
300
990
120***
160
280
1.790
760
760
1.610
990
1.150

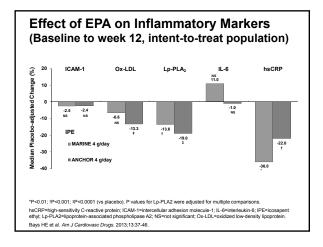


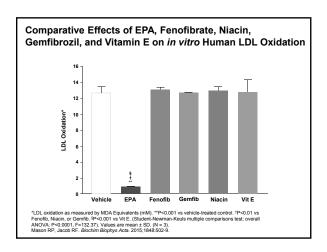



Median follow-up: ≥5 yrs. CARE=Cholester and Recurrent Events Trial; CTT=Cholesterol Treatment Trialist; JUPTER-Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rossuratatin; NS=not significant; PPP=Prospective Pravastatin Pooling, 45=Scandinaviar Sim-Survival Study, WOSCOPS-West of Scharan Coronary Prevention Study, Ballantine CM et al. Circulation. 2001;104:3056-51. CTT Collaborators. Lancet: 2005;366:1257-78. Maki KC et al. J Clin Lipidol. 2012;6:413-28.


(Drug)


CTT (TG >177)





Potential Cardiovascular Benefits of Fish Oils Rich in Omega-3 Fatty Acids

Antidysrhythmic

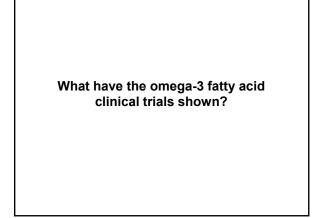
- Reduced sudden death
 Possible prevention of atrial fibrillation
 Possible protection against pathologic
 ventricular arrhythmias
- Improvement in heart rate variability

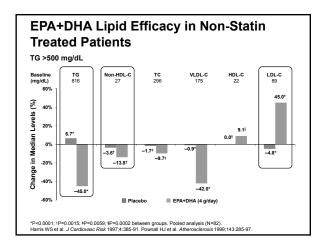
Anti-atherogenic

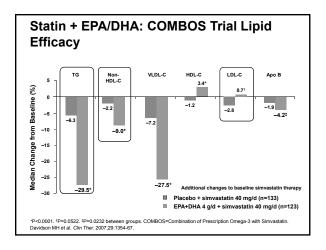
- Reduction in non-HDL-C levels
 Reduction in TG and VLDL-C levels
- Reduction in rG and VLDL-C levels
 Reduction in chylomicrons
- Reduction in VLDL and chylomicron remnants
- Increase in HDL-C levels
- "Improvement" (increase) in LDL and HDL particle size
- Plaque stabilization

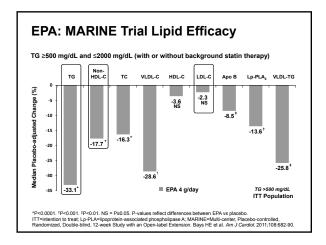
Anti-inflammatory and endothelial protective effects • Reduced endothelial adhesion molecules and decreased leukocyte adhesion receptor expression • Reduction in proinflammatory eicosanoids and

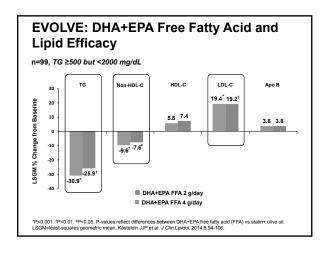
Decreased platelet aggregation

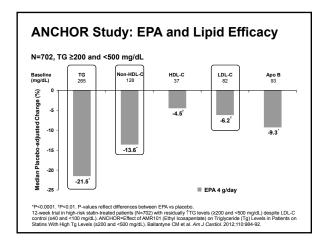

· Improved blood rheologic flow


leukotrienes Vasodilation

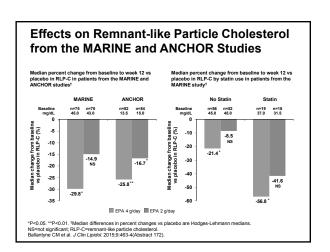

Antithrombotic

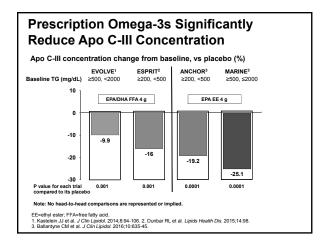

Decreased systolic and diastolic blood pressure

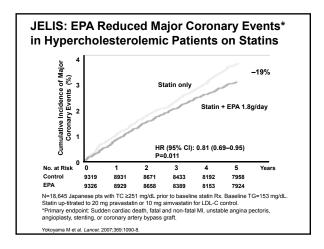

Bays HE. Chapter 21. The John Hopkins Textbook of Dyslipidemia, by Peter O Kwiterovich, Copyright 2010; 245-257

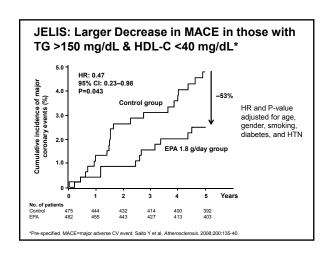


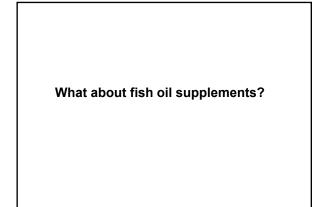






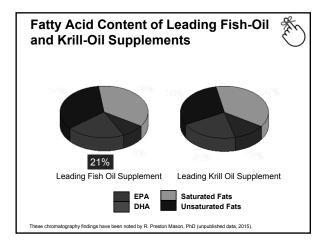






Background: Dietary Supplement Omega-3

- Fish oil is among the most commonly used dietary supplement by US adults¹
 - Global sales may reach \$3.3 billion by 2020^2
- ~7.8% of US adults (19 million) have taken a fish oil supplement in the previous 30 days³
- Omega-3 dietary supplements are widely available, but their content, integrity and efficacy remain unverified⁴


*

- Non-marine omega-3 (flaxseed and walnut) do not lower TG
- There are **no OTC** omega-3 products in US (just Rx & DS)!
- Barnes PM et al. National Health Statistics Reports. 2008;12:1-24.
 Its//globenewswite.com/news-release/014/10/28/8777161/10104781/en/Global-Fish-Oli-Market-By-Application-Aguaculture-Direct-Human-Cosumption-Is-Expected-to-Reach-USB-3-300-0-Million-by-2020-New-Report-By-Grand-View-Research-Inc.html?parent=678724#sthash.GlobaSRF.dpuf
 Milh NCCH. Available at: https://cnch.nih.gov/healthorega3/introducidon.htm
 Mason RP et al. Poster presented at the AMCP 2015 Nexus. Orlando, FL.

Omega-3			
	Prescriptions		
	EPA	EPA +DHA	Dietary Supplements
FDA classification	Drug	Drug	Food
FDA approval	Yes	Yes	No
Ingredients	EPA	EPA + DHA	Variable EPA + DHA (none pure EPA) + other PUFAs and saturated FA
Omega-3 per capsule	0.98 g	0.84 g	Usually 0.2–0.4 g EPA; 0.1–0.3 g DHA
Capsules/day to provide 4 g omega-3	4	~4	Usually 10–20
Recommended dose	4 g/day	4 g/day	General: Eat oily fish or 1 g/day Prior CHD: 1–2 g/day (>2 g/day directed by HCP) For ↓TG: 2–4 g/day directed by HCP
Purity/efficacy & safety tested	Yes	Yes	Not required (usually not done)

Krill Oil

- Krill are oceanic, shrimplike, planktonic crustaceans. Krill feed on phytoplankton, and thereby accumulate omega-3 fatty acids.
- Marketing claims suggest krill oil may be a better source of omega-3 fatty acids
 - Reduced fishy aftertaste
 - Improved bioavailability (administered as a phospholipid instead of an ethyl ester)
 - Incorporation of an antioxidant (astaxanthin)
 - Low levels of metallic and other toxins
- Most of the published data regarding krill oil evaluated less than (and often substantially less than) 4 g of omega-3 fatty acids (FA) per day
 - Phospholipids sometimes compose 50% of the capsule content
 - 4 g of omega-3 FA per day via a 1-g krill oil supplement containing 300 mg of total omega-3 FA per capsule = 13 krill oil capsules per day
 - 4 g of omega-3 FA per day via a 0.5-g krill oil supplement containing 90 mg
 - of total omega-3 FA per capsule = 44 krill oil capsules per day

Summary

HTG is an important public health burden

- Optimal TG level is <100 mg/dL
- HTG is common in central obesity and T2DM
- Causal factor for ASCVD events, even when LDL-C is optimal

Guidelines and recommendations

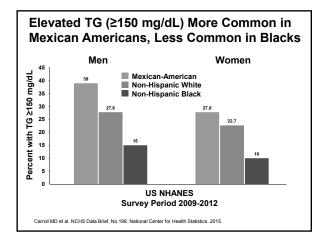
- Appropriate nutrition and physical activity in all
 Medical Rx for very high TG (>500 mg/dL) to help prevent
- pancreatitis
- Medical Rx for HTG 200–500 mg/dL, *consider* in high-risk pt on statin (see below)

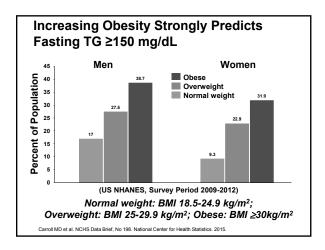
Recommended medical Rx

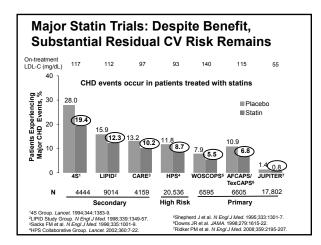
- Statins (for all high risk w/ TG 200-500, unless statin-intolerant)
- Fenofibrate (HTG subgroups positive in T2DM)
- Omega-3 (JELIS, HTG subgroup especially positive)
 Niacin (AIM-HIGH HTG subgroup positive, but difficult to use)

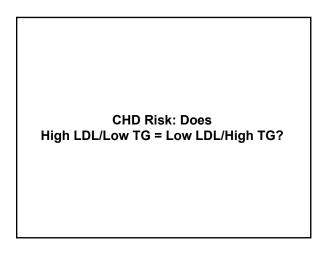
ASCVD=atherosclerotic CVD; T2DM=type 2 diabetes mellitus.

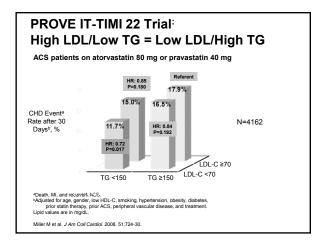
"Another factor contributing to the uncertainty is that no prospective CHD outcome drug trial conducted in hypertriglyceridemic patients has ever shown as a primary endpoint that lowering TG levels (and only TG levels) reduces CHD events."

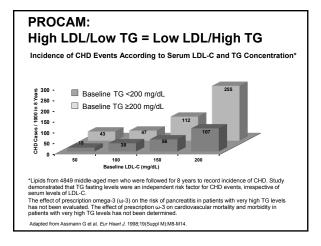

Bays HE. Drugs Today (Barc). 2008,44:205-46.

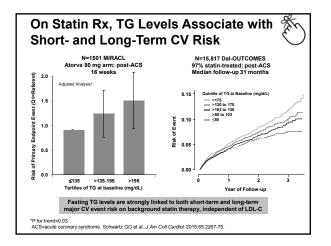

Ongoing EPA+DHA and EPA-only: CVD Outcome Studies

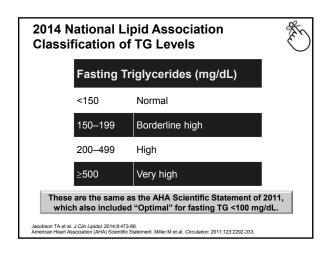

	REDUCE-IT ¹ (Ongoing)	STRENGTH ² (Ongoing)
Omega-3 type Dose	EPA 4 g/day	EPA+DHA (FFA) 4 g/day
Population	International	International
N	~8000	Estimated 13,000
Gender	Men and non-pregnant or sterile women ages 45 or older	Men or women, ≥18 years of age
Risk Profile	TG >150 mg/dL +CHD or ↑CHD risk	High CV risk (50%), prior ASCVD (50%)
Follow-up	4–6 years (planned)	3-5 years (planned)
Statin Use	100% (at LDL-C goal)	100% (at LDL-C goal)
Primary End Point	Expanded major adverse cardiac event	Expanded Major adverse cardiac event
Result	Powered for 15% RRR	Powered for 15% RRR
Baseline TG	>200 mg/dL	≥200 mg/dL, <500 mg/dL
1,2. http://www.clinicaltrials.go	v. RRR=relative risk reduction.	

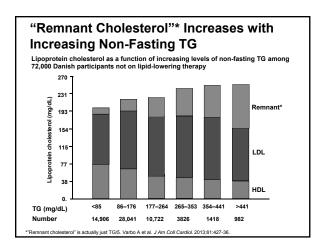

Role and Importance of HTG in CVD Risk Assessment

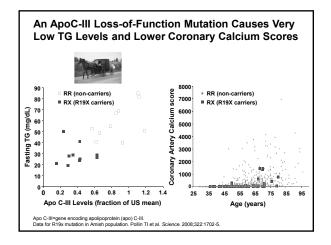

00 1 1/2 2 22	Triglyce	ride Cut Points	s, mg/dL
20+ Years	>150	>200	>500
Overall	31%	16%	1.1%
Men	35%	20%	1.8%
Women	27%	13%	0.5%
Heritage			
Mexican	35%	20%	1.4%
African	16%	8%	0.4%
European	33%	18%	1.1%

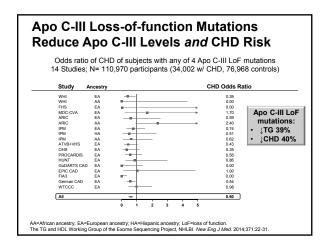






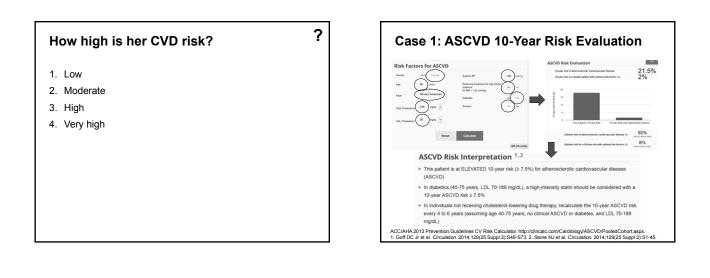

Fasting vs Nonfasting Measurements of TG and Non-HDL-C


×


- Fasting TG is used to categorize TG elevation
- Studies have supported nonfasting TG as a superior predictor of incident CVD vs fasting TG
- Nonfasting TG is **similar** to fasting after a low-fat meal (eg, <15 g fat)
- If nonfasting TG is ≥200 mg/dL, a fasting lipid panel is recommended soon (eg, 2-4 wks later)
- Non-HDL-C is accurate fasting or nonfasting, and is the best predictor of CVD risk in patients with HTG*

National Lipid Association (NLA) Recommendations. Jacobson TA et al. J Clin Lipidol. 2014;8:473-88. AHA Scientific Statement. Miller M et al. Circulation. 2011;123:2292-333. Practical Algorithm for Screening and × Managing Elevated TG Screen With Nonfasting TG <200 mg/dL ≥200 mg/dL ſ 1 Follow-up as required Fasting lipoprotein panel ┷┑┍ Г Optimal Normal Borderline High 200–499 Very High >500 ↓ ↓ ↓ ecommendations Weight loss Carbohydrates Protein Up to 5% 50%–60% 15% 5%–10% 50%–55% 15%–20% 5%–10% 45%–50% 20% Fat 25%-35% 30%-35% 30%-35% Aerobic activity at least 2x weekly Pharmacologic therapy AHA Scientific Statement. Miller M et al. Circulation. 2011;123:2292-333

Mechanisms of Increased ASCVD in Patients with HTG



Summary

- TG-rich particles promote atherogenesis through several mechanisms
- High LDL/low TG = Low LDL/high TG
- The LDL hypothesis is not challenged by the knowledge that other Apo B-containing lipoproteins also participate in atherogenesis

Case: 56-yo African American Woman with HTG and T2DM, No Prior CHD Events

	ng/d, metformin 500 mg BID, HCTZ 50 mg/d
Exam:	
BMI=33 kg/m ² , B	P=138/92 mm Hg, Waist=36", Non-smoker
Labs:	
Fasting glucose	115 mg/dL
A1c	6.2%
TC	208 mg/dL
TG	559 mg/dL
HDL-C	38 mg/dL
LDL-C	108 mg/dL
Non-HDL-C	170 mg/dL

	/hich result ou?	t is most concerning to	?
1.	BP	138/92 mm Hg	
2.	BMI	33 kg/m ²	
3.	Fasting glucose	115 mg/dL	
4.	A1c	6.2%	
5.	тс	208 mg/dL	
6.	TG	559 mg/dL	
7.	HDL-C	38 mg/dL	
8.	LDL-C	108 mg/dL	
9.	Non-HDL-C	170 mg/dL	

Guideline	Classification (mg/dL)	Recommendation
ACC/AHA 2013	Not addressed	Refer to AHA 2011
AHA 2011 ¹	<100 (optimal) ¹ <150 (normal)	Emphasized lifestyle modification No recommendations for pharmacotherapy in TG <500 mg/dL
NLA 2014 ²	150–199 (borderline) 200–499 (high) ≥500 (very high)	Elevated TG not a primary target of therapy unless very high (>500 mg/dL) For TG 200-499, statin 1st-line therapy. When non-HDL-C goals* not achieved: Fibrates, high-dose (2-4 g/d) omega-3 FA or niacin.