12:30 - 1:45 pm

Dyslipidemia in Primary Care: New Guideline Recommendations and Treatment Options

SPEAKERS

primed

Carl E. Orringer, MD, FACC, FNLA James A. Underberg, MD, MS, FACPM, FACP, FASH, FNLA

primed

Presenter Disclosure Information

The following relationships exist related to this presentation:

 Carl E. Orringer, MD, FACC, FNLA: No financial relationships to disclose.
James A. Underberg, MD, MS, FACPM, FACP, FASH, FNLA: Speakers Bureau for AstraZeneca, Merck & Co., Inc; Amgen, Inc; Aegerion Pharmaceuticals Inc; sanofi-aventis U.S.; Genzyme; and Alexion Pharmaceuticals, Inc. Research for Pfizer, Inc. and Aegerion Pharmaceuticals Inc. Consultant for Amgen, Inc. and Amarin Pharma Inc.

Off-Label/Investigational Discussion

In accordance with pmiCME policy, faculty have been asked to disclose discussion of unlabeled or unapproved use(s) of drugs or devices during the course of their presentations.

Objectives

- Outline the key differences between the 2013 AHA/ACC guideline recommendations and those from other hypercholesterolemia guidelines
- Implement optimal medical therapy for patients with hypercholesterolemia based on the latest guideline recommendations and clinical data
- Discuss the role of PCSK9 in LDL-C metabolism and its potential as a therapeutic target for the treatment of hypercholesterolemia
- Evaluate recent clinical trial data and the potential role of PCSK9 inhibitors in reducing cardiovascular risk among various patient groups with hypercholesterolemia

Hypercholesterolemia and Coronary Heart Disease

LDL Cholesterol

- Remains the cornerstone of the relationship between lipids and CHD and is now accepted as causative in the atherosclerotic pathway
- Epidemiological studies supported that the increase in LDL is associated with an increase in CHD
- 10 mg/dL increase in LDL-C results in 12% increase in CVD risk
- Studies showed that it is the most abundant & clearly evident atherogenic lipoprotein
- The ultimate proof in the LDL hypothesis is the compendium of evidence from both observational and clinical trials demonstrating its reduction resulted in CHD reduction

NCEP, Adult Treatment Panel III. JAMA. 2001;285:2486-2497. Wood D, et al. Atherosclerosis. 1998;140:199-270. Howard BV, et al. Arterioscler Thromb Vasc Biol. 2000;20:830-835.

Risk	for Har	d CVE	D Events	s for LE	DL-C					
at Various Intervals According to										
	Global CVD Risk*									
	Risk of Non-Fatal Myocardial Infarction, CHD Death and Stroke (%) over ~5 Years Rx									
				DM w/o						

mg/dL	DM	MS/IFG	DM/MS	CVD	No DM
190	62%	36%	27%	16%	9%
160	43%	27%	21%	12%	7%
130	30%	20%	16%	9%	5%
100	21%	15%	13%	7%	4%
70	14%	11%	10%	5%	3%
40	10%	8%	8%	4%	2%

CVD = cardiovascular disease; DM = diabetes mellitus; MS = metabolic syndrome; IFG = impaired fasting glucose. *Adapted from Robinson JG, Stone NJ. Am J Cardiol. 2006;98:1405-1408.

Guideline Recommendations for the Treatment of Dyslipidemia

ATP III Updated Treatment Recommendations

Risk Category	LDL-C Goal (mg/dL)	Non-HDL Goal	Recommended Therapy
<i>High risk:</i> CHD or CHD risk equivalents (10-year risk >20%)	<100 mg/dL (Optional: <70 mg/dL)	<130 mg/dL (Optional: <100 mg/dL)	Statins
Moderately high risk: ≥2 risk factors (10-year risk 10%-20%)	<130 mg/dL (Optional: <100 mg/dL)	<160 mg/dL (Optional: <130 mg/dL)	Bile acid sequestrants Nicotinic acid
<i>Moderate risk:</i> ≥2 risk factors (10-year risk <10%)	<130 mg/dL	<160 mg/dL	FIDIIC ACIOS
<i>Lower risk:</i> 0-1 risk factor	<160 mg/dL	<190 mg/dL	

NCEP, Adult Treatment Panel III. JAMA. 2001;285:2486-2497. Grundy SM et al. Circulation. 2004;110:227-239.

2013 ACC/AHA Guidelines

2014 NLA Treatment Recommendations

Risk Category	LDL-C Goal (mg/dL)	Non-HDL Goal (mg/dL)	Recommended Therapy
Low Risk	<100	<130	First line:
Moderate Risk	<100	<130	Moderate to high intensity statin
High Risk	<100	<130	Second line:
Very High Risk	<70	<100	Bile acid sequestrants Cholesterol absorption inhibitors Nicotinic acid Fibric acids
Treatment reco	ommendations are consistent	s in the Canadia t with those of t	n and European guidelines he 2014 NLA.

Treatment Recommendations LDL-C Reduction Statin Benefit Group Recommended Therapy Clinical atherosclerotic ≥50% 30% to <50% Age ≤75 y: High-intensity statin cardiovascular disease (ASCVD) Age >75 y: Mod-intensity statin LDL-C ≥190 mg/dL ≥50% High-intensity statin Mod-intensity statin 40-70 years of age with DM + LDL-C 70-189 mg/dL 30% to <50% or ASCVD risk ≥7.5%: ≥50% High-intensity statin 40-70 years of age with LDL-C 70-189 mg/dL + 10-year ASCVD risk ≥7.5% 30% to <50% or Moderate-to-high intensity ≥50% statin Non-statin therapy should only be considered in patients unable to tolerate less-than-recommended intensity of a statin, or who are completely statin intolerant. Stone NJ, et al. Circ 2014;129(suppl 25):S1-45

2013 ACC/AHA Guidelines Individuals Not in a Statin Benefit Group

- For patients not in 1 of the 4 statin benefit groups, additional factors may inform treatment decision-making:
 - Family history of premature ASCVD
 - Elevated lifetime risk of ASCVD
 - LDL-C ≥160 mg/dL
 - hs-CRP ≥2.0 mg/L
 - Subclinical atherosclerosis: Coronary calcium score ≥300 or ankle brachial index <0.9
- Discussion of the benefit, risks, and patient preferences

Stone NJ, et al. Ann Intern Med. 2014;160(5):339-43.

- The Expert Panel was unable to find RCT evidence to support continued use of specific LDL-C and/or non-HDL-C treatment targets.
 - Statin therapy reduces ASCVD events across the spectrum of baseline LDL-C levels >70 mg/dL
- Decreasing statin dose may be considered when LDL-C <40 mg/dL
- The appropriate intensity of statin therapy should be used to reduce CVD risk in those most likely to benefit.
- Nonstatin therapies do not provide acceptable CVD risk reduction benefits compared to their potential for adverse effects in the routine prevention of CVD.

Stone NJ, et al. Ann Intern Med. 2014;160(5):339-43.

	Simva (n=9077)	EZ/ Simva (n=9067)	р
ALT and/or AST ≥3x ULN	2.3%	2.5%	0.43
Cholecystectomy	1.5%	1.5%	0.96
Gallbladder-related AEs	3.5%	3.1%	0.10
Rhabdomyolysis*	0.2%	0.1%	0.37
Myopathy*	0.1%	0.2%	0.32
Rhabdo, myopathy, myalgia with CK elevation*	0.6%	0.6%	0.64
Cancer* (7-yr KM %)	10.2%	10.2%	0.57

IMPROVE-IT: Conclusions

- First trial to show incremental CVD benefit when adding non-statin agent (ezetimibe) to statin therapy
- · Reaffirms the LDL hypothesis
- Demonstrates even lower LDL-C is even better (achieved LDL-C 54 vs 70 mg/dL at year 1)
- · Confirms ezetimibe safety profile
- · Results further support LDL targets
- · Results could be considered for future guidelines

Cannon CP, et al. N Engl J Med. 2015;372(25):2387-97.

,	PCSK9 Missense/LOF Variant R46L Associated with Lower Risk of Early-Onset M								et MI
	Site	Study	Patients	Controls	Freque Minor I (%	ency of L Allele %)	Earl	OR for y-Onset MI 95% CI)*	<i>p</i> -value
					Patients	Controls			
	Finland	FINRISK	209	210	1.3	4.1	0.30	(0.11-0.84)	0.02
	Sweden	Malmö Diet and Cancer Study – cardiovascular cohort	150	149	0.7	2.0	0.32	(0.07-1.61)	0.17
	Spain	Registre Gironi del Cor (REGICOR)	361	361	1.0	2.8	0.35	(0.15-0.82)	0.02
	Seattle	Heart Attack Risk in Puget Sound	542	631	0.9	1.9	0.45	(0.21-0.98)	0.049
	Boston	Massachusetts General Hospital Premature Coronary Artery Disease Study	192	266	1.4	2.3	0.59	(0.21-1.69)	0.46
	Combin	ned Analysis	1454	1617	0.99	2.4	0.40	(0.26-0.61)	0.00002
0 Ka	R = odds athiresan S	ratio; CI = confidence in and the Myocardial Infarction	terval. Genetics (Consortium	. N Engl J	Med. 200	8;358	:2299-2300.	

Safety and Efficacy of PCSK9 Inhibitors

	Biweekly		Mor	nthly
Adverse Event	PBO Q2W + EZE QD (N=51)	Evolocumab 140 mg Q2W + PBO QD (N=103)	Placebo every month + EZE QD (N=51)	Evolocumab 420 mg every month + PBO QD (N=102)
CK > 5x ULN	6%	0%	0%	2%
Myalgia	14%	22%	7%	9%
Muscle related SMO*	16%	29%	13%	12%

*P value <0.0001 for all trials except OPTIONS I (p=0.01) and OPTIONS II (p=0.0125). Shapiro MD, et al. Shapiro et al. *Curr Atheroscler Rep.* 2015;17(4):499. Robinson JG, et al. *N Engl J Med.* 2015;372:149-99.

		Duration	% LDL	-C Reduction
Study	Population	(Weeks)	Evolocumab	Comparator
MENDEL-2	Hypercholesterolemia and low ASCVD risk	12	56-57%	18-19% (ezetimibe) 0.1-1% (placebo)
DESCARTES	Hypercholesterolemia with varying levels of ASCVD risk	52	47-55%	2-10% (placebo)
LAPLACE-2	Hypercholesterolemia and mixed dyslipidemia	12 but mean of 10	63-75%	19-32% (ezetimibe)
GAUSS-2	Hypercholesterolemia and history of intolerance to at least two statins	12 but mean of 10	55-56%	37-39% (ezetimibe)
RUTHERFORD-2	HeFH	12	56-61%	1% reduction to +5% increase (ezetimibe)
TESLA Part B	HoFH	12	23%	+8% increase (placebo)

Alirocumab: Ad ODYSSEY L	verse I ONG	Events TERM	s in
Event	Alirocumab (N=1550)	Placebo (N=788)	P-Value
Summary of adverse events – no. of patients (%)	()	()	
Any adverse event	1255 (81.0)	650 (82.5)	.40
Serious adverse event	290 (18.7)	154 (19.5)	.66
Adverse event leading to study-drug discontinuation	111 (7.2)	46 (5.8)	.26
Adverse event leading to death	8 (0.5)	10 (1.3)	.08
Cardiovascular adverse events of interest - no. of pat	ients (%)		
Adjudicated major adverse cardiovascular events in post hoc analysis	27 (1.7)	26 (3.3)	.02
Other adverse events of interest			
General allergic reaction - no. of patients (%)	156 (10.1)	75 (9.5)	.71
Local injection-site reaction - no. of patients (%)	91 (5.9)	33 (4.2)	.10
Myalgia – no. of patients (%)	84 (5.4)	23 (2.9)	.006
Neurologic event - no. of patients (%)	65 (4.2)	35 (4.4)	.83
Neurocognitive disorder - no. of patients (%)	18 (1.2)	4 (0.5)	.17
Laboratory values of interest – no. of patients (%)			
Alanine aminotransferase >3x ULN	28/1533 (1.8)	16/779 (2.1)	.75
Aspartate aminotransferase >3x ULN	22/1533 (1.4)	18/779 (2.3)	.13
Creatine kinase >3x ULN	56/1507 (3.7)	38/771 (4.9)	.18

Robinson JG, et al. N Engl J Med. 2015;372:1489-99.

Evolocumab: Adverse Events in OSLER Program

Variable	Evolocumab Group (N=2976)	Standard Therapy Group (N=1489)
Adverse events	NO. (%)	NO. (%)
Any	2060 (69.2)	965 (64.8)
Serious	222 (7.5)	111 (7.5)
Leading to discontinuation of evolocumab	71 (2.4)	NA
Muscle-related	190 (6.4)	90 (6.0)
Injection-site reaction	129 (4.3)	NA
Neurocognitive event	27 (0.9)	4 (0.3)
Other		
Arthralgia	137 (4.6)	48 (3.2)
Headache	106 (3.6)	32 (2.1)
Limb pain	99 (3.3)	32 (2.1)
Fatigue	83 (2.8)	15 (1.0)
Laboratory results		
Alanine or aspartate aminotransferase >3 x ULN at any visit after baseline	31 (1.0)	18 (1.2)
Creatine kinase >5 x ULN at any visit after baseline	17 (0.6)	17 (1.1)

		Boc	ocizumab	(mg)		Bococizu	mab (mg
Variable	Placebo (n=49)	50 (n=47)	100 (n=30)	150 (n=24)	Placebo (n=51)	200 (n=16)	300 (n=13)
AEs	41 (84%)	36 (77%)	25 (83%)	20 (83%)	41 (80%)	15 (94%)	11 (85%
Most frequent AEs (≥~10%)† Nasopharyngitis Upper respiratory tract infection Diarrhea	6 (12%) 7 (14%) 4 (8%)	8 (17%) 4 (9%) 3 (6%)	4 (13%) 2 (7%) 2 (7%)	3 (13%) 3 (13%) 3 (13%)	7 (14%) 9 (18%) 2 (4%)	1 (6%) 0 0	3 (23%) 1 (8%) 0
Injection site pain	4 (8%)	4 (9%)	41 (84%)	0	0	2 (4%)	0
Arthralgia	2 (4%)	0	3 (10%)	1 (4%)	3 (6%)	0	2 (15%)
Headache	2 (4%)	2 (4%)	0	1 (4%)	1 (2%)	3 (19%)	2 (15%)
Injection site reaction	1 (2%)	3 (6%)	0	4 (17%)	1 (2%)	0	2 (15%)
Creatine kinase (>2 x ULN)	15%*	0%*	10%	6%	12%*	14%*	6%
Alanine aminotransferase (>3 x ULN)	0%*	0%*	0%	0%	0%*	0%*	0%
Aspartate aminotransferase (>3 x ULN)	0%*	0%*	0%	0%	0%*	0%*	0%

PCSI	Outcor	or Cardic mes Trial	s S	Jiar
	Evolocumab (AMG 145)	Alirocumab (SAR236553 /REGN727)	Bocociz (RN 3	umab* 16)
Sponsor	Amgen	Sanofi / Regeneron	Pfiz	er
Trial	FOURIER	ODYSSEY Outcomes	SPIRE I	SPIRE II
Sample size	22,500	18,000	12,000	6,300
Patients	MI, stroke or PAD	4-52 wks post-ACS	High risk of CV event	
Statin	Atorva ≥20 mg or equiv	Evid-based med Rx	Lipid-lowering Rx	
LDL-C mg/dL(mmol/L)	≥70 (≥1.8)	≥70 (≥1.8)	70-99 (1.8-2.6)	≥100 (≥2.6)
PCSK9i Dosing	Q2W or Q4W	Q2W	Q2\	N
Endpoint	1°: CV death, MI, stroke, revasc or hosp for UA, Key 2°: CV death, MI, or stroke	CHD death, MI, ischemic stroke, or hosp for UA	CV death, MI, stroke, or urgent revase	
Completion	2/2018	12/2017	6/2018; 3	3/2018

Currently Available PCSK9 Inhibitors		
	Alirocumab	Evolocumab
FDA approval	July 2015	August 2015
Indication	Adjunct to diet and max tolerated statin for adults with HeFH, or clinical ASCVD, who require additional lowering of LDL-C	Adjunct to diet and max tolerated statin for adults with HeFH, or clinical ASCVD, who require additional lowering of LDL-C, HoFH pts on other LTT
Dosing	75 – 150 mg SC Q2W	140 mg SC Q2W or 420 mg SC monthly for HoFH
How supplied	Single-dose pre-filled pens and pre- filled glass syringes that deliver – 75 mg/mL or 150 mg/mL solution	Single-use pre-filled syringe or SureClick [®] autoinjector that deliver – 1mL of 140 mg/mL solution
Side effects	Nasopharyngitis, injection site reactions; hypersensitivity reactions	Nasopharyngitis, injection site reactions; hypersensitivity reactions

lowering therapy. Evolocumab - Repatha. Drugs@FDA FDA Approved Drug Products. August 2015. http://www.accessdata.fda.gov/ Alirocumab - Pralent. Drugs@FDA FDA Approved Drug Products. July 2015. http://www.accessdata.fda.gov/

essed September 8, 201

When to consider a PCSK9 inhibitor?

- FH patients not achieving LDL-C goal on max tolerated statins?
- Patients who are intolerant to statins needing additional LDL-C lowering?
- High CV risk patient not achieving LDL-C goal on max tolerated statin therapy?

Summary

௹

- Increased LDL-C levels are associated with a linear increase in CVD risk and every 1 mmol/L (39mg/dL) reduction in LDL-C is associated with a significant 22% reduction in ischemic events
- Multiple guidelines are available on the treatment of dyslipidemia and differences exist regarding LDL-C goals and therapeutic options to use
- PCSK9 plays a significant role in the regulation and synthesis of cholesterol, and inhibition has been shown to be an effective approach to reducing LDL-C
- Emerging data with PCSK9 inhibitors show these agents to be well tolerated, safe within the duration of follow up, and highly efficacious in reducing LDL-C in FH patients and patients at high CV risk treated with statins ± other LLT; cardiovascular outcome trials are needed and ongoing

Case Study

- A 53 year old male has been treated with primary PCI for a STEMI. He is discharged on the following meds:
 - Aspirin 81 mg daily
 - Ticagrelor 90 mg twice daily
 - Enalapril 20 mg daily
 - Metoprolol 150mg daily
 - Atorvastatin 80 mg daily
- When you see him at follow-up at one month, he is doing well. He is on a diet that is low in saturated fats. He is biking daily. He is tolerating all his medications and states he is adherent.
- His LDL cholesterol is 128 mg/dl.

Case Study Cont'd

- He is started on ezetimibe 10 mg daily.
- At 1 month check up his LDL cholesterol was at 95 mg/dL