1 – 2:15pm

primed

Optimizing Insulin Therapy for Patients with Type 2 Diabetes: Existing Challenges and New Opportunities for Improved Care

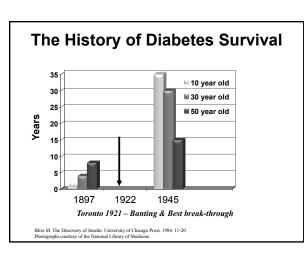
SPEAKERS

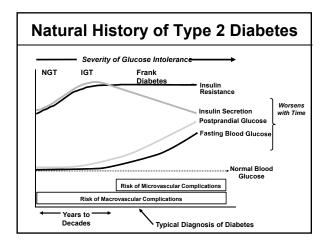
Lawrence Blonde, MD, FACP, FACE Luigi Meneghini, MD, MBA

primed

Presenter Disclosure Information

The following relationships exist related to this presentation:

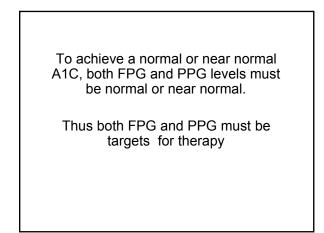

- Lawrence Blonde, MD, FACP, FACE: Consultant for AstraZeneca; GlaxoSmithKline; Intarcia Theraputics, Inc.; Janssen Pharmaceuticals, Inc.; Merck & Co., Inc.; Novo Nordisk Inc.; Quest Diagnostics; and sanofi-aventis U.S. Speakers Bureau for AstraZeneca; Janssen Pharmaceuticals, Inc.; Merck & Co., Inc; Novo Nordisk Inc.; and sanofiaventis U.S.
- ► Luigi Meneghini, MD, MBA: Advisory Board for Novo Nordisk Inc. and sanofi-aventis U.S.

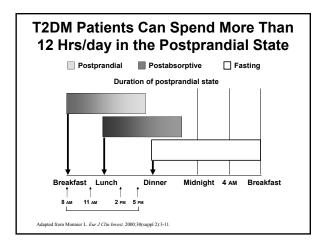

Off-Label/Investigational Discussion

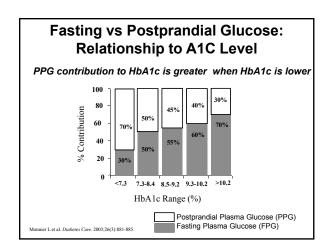
In accordance with pmiCME policy, faculty have been asked to disclose discussion of unlabeled or unapproved use(s) of drugs or devices during the course of their presentations.

Learning Objectives

- Better identify and understand pathophysiologic defects contributing to postprandial hyperglycemia and its impact on managing glycemic burden in type 2 diabetes patients
- Incorporate assessment of postprandial glucose as part of diagnostic and treatment plan so as to target therapy to better manage hyperglycemia and prevent potential complications in patients with type 2 diabetes mellitus
- Overcome both clinician and patient resistance to appropriate initiation and intensification of insulin therapy to best manage postprandial hyperglycemia, while lowering risk for adverse events
- Better distinguish conventional, new, and emerging prandial insulin therapies for appropriate treatment selection in patients with T2DM so as to properly integrate in to care and improve outcomes






Glycemic Target Goals for Patients with Type 2 Diabetes

Treatment Goal	ADA	AACE
HbA _{1C} (%)	< 7	≤ 6.5
FPG (mg/dL)	80-130	<110
Preprandial glucose (mg/dL)	80–130	< 110
Postprandial glucose (mg/dL)	< 180*	< 140**
HbA _{1C} is "gold standard" measure previous 2–3 ma	5	trol over
* Peak PPG; ** 2 Hr PPG American Diabetes Association. <i>Diabetes Care</i> . 2015; 38(suppl 1):S3 Handelsman, Y., et al. (2015). Endocr Pract 21(0): 1-87.	3-S40.	

ADA/EASI Managemer			
	More stringent		Less stringent
Patient attitude and expected treatment efforts	Highly motivated, adherent, excellent self-care capacities		ed, non-adherent, lf-care capacities
Risks potentially associated with hypoglycemia, other adverse events	Low		High
Disease duration			
	Newly diagnosed		Long-standing
Life expectancy	Long		Short
Important comorbidities			
	Absent	Few/mild	Severe
Established vascular complications	Absent	Few/mild	Severe
Resources, support system			
EASD=European Association for the Study of Diabetes	Readily available		Limited
	Inzucchi, S. E.,	et al. (2015). Diabetes	Care 38(1): 1

Case: Poorly Controlled T2DM Patient on OAD meds

- 55-yr old African American male with T2DM diagnosis since age 45 on OADs and poorly controlled T2DM
- Hx: HTN, mixed dyslipidemia adequately controlled with medications
 - Employed as heavy machine operator, married with 2 children in college
 - Relatively active with exercise 3 times per week for 30 minutes daily. Tennis occasionally.
 - EtoH & tobacco (negative)

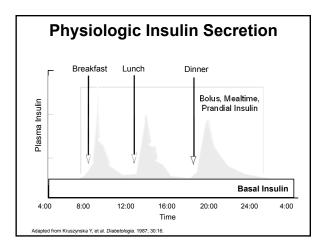
Current Exam & Treatment

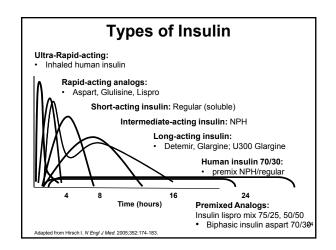
Current exam:

- Wt 208 lbs, Ht 68", BMI 31.6
- A1C 8.2%, Cr 0.9 mg/dL
- eGFR: 90 mL/min/1.73 m²

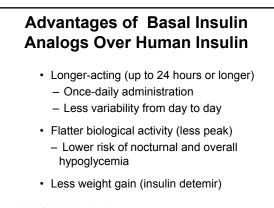
Current treatment:

- Metformin 1000 mg BID
- Glimepiride 4 mg QD
- Sitagliptin 50 mg QD
- Atorvastatin 20 mg QD
- Lisinopril 10 mg QD

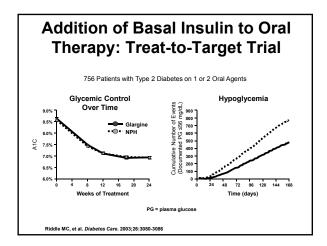

Current Presentation, cont.


- A1C is 8.2% and FPG averages ~ 182 mg/dL Random BG after breakfast ~ 210 mg/dL
- He has fear of needles and dreads having to inject himself, particularly at his work as a heavy machine operator.
- Concerned about increase in weight despite fairly strict diet and exercise. Has gained 10 lbs since last visit 6 months ago.

When to Consider Insulin in a Person with Type 2 Diabetes


- When combination of non-insulin antihyperglycemic medications are unable to achieve A1C, FPG and/or PPG targets
- Unacceptable side effects from non insulin medications
- · Advanced hepatic or renal disease
- Special considerations (steroids, infection, pregnancy)
- Hyperglycemia in a hospitalized patient
- · "Severely" uncontrolled diabetes*

Nathan DM, et al. Diabetes Care. 2009; volume 32,193-203. *Random Glucose > 300 mg/dl Inzucchi SE, et al. Diabetes Care. 2012;35(6):1364-1379. Ketonuria, Symptomatic polyuri wcichel Jone



Insulin*	Onset	Peak	Effective Duration
Ultra-Rapid Acting technosphere inhaled (TI) human insulin	7.5 -10 minutes	12-15 minutes	28-180 minutes
Rapid-Acting Aspart, glulisine, lispro	5-15 minutes	30-90 minutes	<5 hours
Short-Acting Regular, U-500	30-60 minutes	2-3 hours	Regular: 5-8 hours U-500: 12 hours
Intermediate (basal) NPH	2-4 hours	4-10 hours	10-16 hours
Long-Acting (basal) Glargine, detemir U300 Glargine onset develops over 6 hours; Flatter profile; Duration longer than 24 hours	2-4 hours**	Modest peak	20-24 hours
Premixed			
75% NPL/25% lispro	5-15 minutes 5-15 minutes	Dual	10-16 hours 10-16 hours
50% NPL/50% lispro 70% aspart protamine/30% aspart 70% NPH/30% regular/NPH	5-15 minutes	Dual	10-16 hours
ional in some comments in	30-60 minutes	Dual	10-16 hours
*Assumes 0.1-0.2 units/kg/injection. Onset and duration may	vary significantly by injection	i site.	

Hirsch IB. N Engl J Med. 2005;352(2):174-183. Meneghini L. et al. Diabetes Obes Metab. 2007;9(6):902-913. Monami M, et al. Diabetes Res Clin Pract. 2008;81(2):184-189.

Basal Insulin Analogs in Development

- Insulin Degludec U100 & U200
- · PEGylated insulin lispro

Heise T, et al. Diabetes Obes Metab. 2012;14:944-950 Becker R, et al. European Patent EP 2 387 989 A2. 2011 Bergenstal RM, et al. Diabetes Care. 2012;35:2140-2147

When It May Be Time to Stop Titrating Basal Insulin Therapy in T2DM?

- Individual is not meeting glycemic targets on basal insulin^{1,2}
 - A1C still not at goal with ≈0.5 U/kg/day of daily basal insulin
 A1C not at goal despite target fasting plasma glucose (FPG) with basal insulin
 - FPG with basal insulin is at target, but PPG is persistently above goal
- Large glucose drops overnight or between meals (suggesting excessive amounts of basal insulin)
- Presence of nocturnal hypoglycemia^{1,2} or when further increases in basal insulin result in hypoglycemia

 Inzucchi S, et al. Diebetes Care. 2012;35:1364-1379. 2. ADA. Practical Insulin: A Handbook for Prescribing Providers. 3rd ed. 2011;1-88; Holman RR, et al. A Engl. Med. 2007;35:1716-1730.
 Davidson MB, et al. Endord Pract 2011;7:365-403.

Options When Basal Insulin + Oral Antihyperglycemic Agents Do Not Achieve Target Glycemia?

- Add GLP-1 receptor agonist (GLP-1 RA) or DPP-4 inhibitor
- · Add SGLT-2 inhibitor
- · Substitute premix insulin
- · Add bolus, mealtime (prandial) insulin
- Add inhaled technosphere insulin

Noninsulin Treatments for Postprandial Hyperglycemia

- GLP-1 RA (exenatide bid, liraglutide, albiglutide)
- Injectable agents that enhance insulin secretion and inhibit glucagon release, both in a glucose-dependent manner^{1,2-3}
- Shorter-acting GLP-1 RAs have greater impact on PPG levels while longer acting GLP-1RAs tend to have greater effect on FPG levels³
- Associated weight^{2,3} and BP reduction² and improved lipid levels
- Exenatide QW and dulaglutide have not been studied with basal insulin; dulaglutide has been studied as add on to prandial insulin

1. Campbell JE, et al. Cell Metab. 2013;17:819-837. 2.Garber AJ. Diabetes Care. 2011;34(suppl 2):s279-s284. 3. Cross LB, Brunell S. Am J Pharm Benefits. 2013:5:e139-e150.

Noninsulin Treatments to Improve Postprandial Glucose

- DPP-4 inhibitors (sitagliptin, linagliptin, saxagliptin, alogliptin)¹
 - Oral agents with moderate A1C improvement, especially when combined with metformin
- Weight neutral
- Adjustments for renal impairment except linagliptin
- · SGLT2 Inhibitors (canagliflozin, dapagliflozin,
- empagliflozin)2,3
- Oral antihyperglycemic agents
- Associated with reduced systolic BP/diastolic BP and weight
- Limited use in patients with significant chronic kidney disease; none are approved for patients with eGFR <45 ml/min

1. Deacon CF, Holst JJ. Expert Opin Pharmacother. 2013;14:2047-2058. 2. Yale J, et al. Diabetes Obes Metab. 2013;15:463-473. 3. Ghosh RK, et al. J Clin Pharmacol. 2012;52:457-463.

Noninsulin Treatments for Postprandial Hyperglycemia

- Incretins and SGLT2 inhibitors have a low risk for hypoglycemia unless they are given in combination with agents that themselves can cause hypoglycemia (sulfonylureas; glinides or insulin)
- When using such combinations clinicians should consider reducing dose of insulin or insulin secretagogues in order to reduce the risk for hypoglycemia

1. Campbell JE, et al. Cell Metab. 2013;17:819-837. 2.Garber AJ. Diabetes Care. 2011;34(suppl 2):s279-s284. 3. Cross LB, Brunell S. Am J Pharm Benefits. 2013:5:e139-e150. However, many type 2 diabetes patients will require the addition of a prandial insulin to achieve glycemic goals

Role for Premixed Insulin

Advantages

- Both basal and prandial components in a single insulin preparation
- Can cover insulin requirements through most of day
- Disadvantages
 - Not physiologic
 - Requires consistent meal and exercise pattern,
 - Cannot separately titrate individual insulin components 1
 - ↑ risk for nocturnal hypoglycemia^{2,3}
 - $-\uparrow$ risk for fasting hyperglycemia if basal component does not last long enough 3
 - Often requires accepting higher A1C goal (\leq 7.5% or \leq 8%)^{2,3}

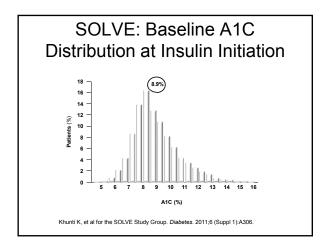
Inzucchi S. et al. ADA, EASD Position Statement. Diabetes Care. 2012;35;1364-1379.
 Janka HU, et al. Diabetes Care. 2005;28:254-259.
 Fritsche A, et al. Diab Obes Metab. 2010;12:115-123.

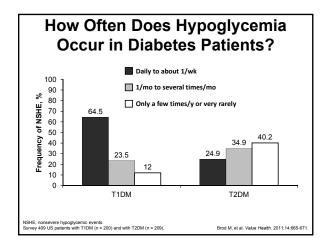
Advantages of Rapid-Acting Insulin Analogs Over Regular Human Insulin

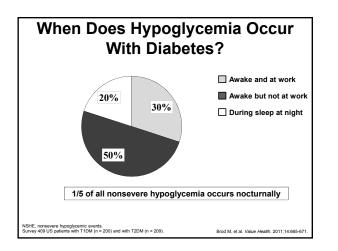
- More rapid onset of action
 - Facilitates more convenient mealtime administration
 - Offers potential for better postprandial glucose control
- More rapid return to basal insulin levels

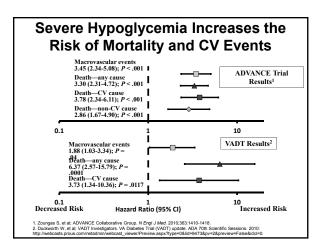
 Potentially less hypoglycemia
- Greater predictability

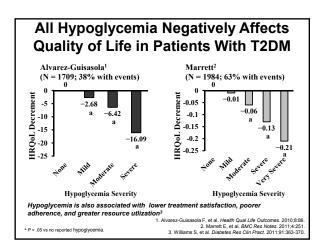
Hirsch IB. N Engl J Med. 2005;352:174-183.

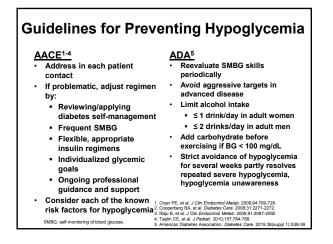

Physician Roadblocks to Timely Insulin Initiation

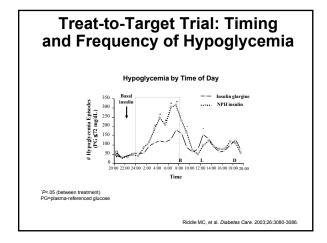

When Do Physicians Con Using Insulin Therapy		Physician Concerns Al Starting Insulin Thera	
Multiple medication failure	75%	Poor patient adherence	92%
A1C > 8.5%	41%	Hypoglycemia	80%
Worsening of microvascular	ning of microvascular	Pain from glucose monitoring	54%
complications		Pain from insulin injections	48%
Unintentional weight loss	12%	Patient is too old	47%
D	9%	No experience with insulin	27%
Repeated fasting glucose > 200 mg/dL		Weight gain	26%
		Diabetes is too severe	13%

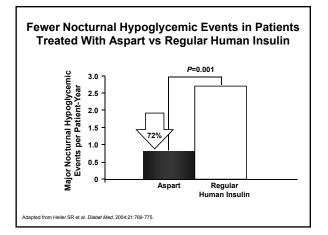

Patient Concerns About Insulin Self-blame due to perception that adherence

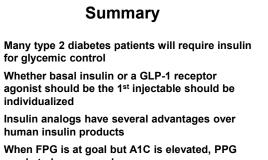

- to therapy should have been better.
- Avoidance/fear of injections
- Concerns of risk
 - Hypoglycemia
 - Weight gain
 - Complexity of regimens
 - Misconceptions about complications
- Skepticism of need for insulin or its efficacy
- · Negative impact on social life

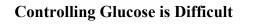

Karter A, et al. Diabetes Care. 2010;33:733-735 Peyrot M, et al. Diabetes Care. 2005;28:2673-2679











needs to be assessed
Multiple options for addressing elevated PPG but ultimately many patients may require

Luigi Meneghini, MD, MBA

Professor of Internal Medicine Division of Endocrinology University of Texas Southwestern Medical Center Executive Director Global Diabetes Program Parkland Health and Hospital System Atlanta, GA.

- Self-monitoring of blood glucose > 4 times daily
- Measurement of A1C every 3-4 months
- · Dietary modification

prandial insulin

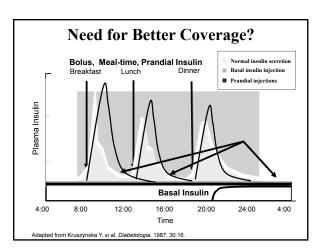
- Rigorous diet / exercise program
- No existing drug that consistently controls blood glucose levels
- Mealtime glucose excursions are poorly controlled

Case: Poorly Controlled T2DM Patient on Basal Insulin at HS

- 58-yr old African American male with T2DM diagnosis since age 45, now on basal insulin at HS for past 3 yrs returns for follow-up.
- Hx: HTN, mixed dyslipidemia adequately controlled with medications
 - Recently widowed, but children live nearby
 - Physically active with regular exercise 4 X/wk for 30-45 minutes daily. Tennis at least once each week
 - EtoH & tobacco (negative)

Current Exam & Treatment

Current exam:

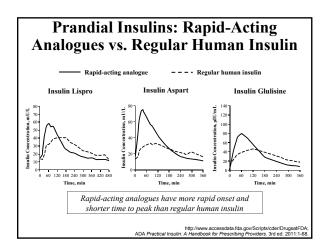

- Wt 228 lbs, Ht 68", BMI 34.7
- A1C 8.2%, Cr 1.2, C-peptide 2.9 ng/mL
- eGFR: 50 mL/min/1.73 m²

Current treatment:

- Metformin 1000 mg BID
- Sitagliptin 100 mg QD
- Glargine insulin 47 U HS
- Atorvastatin 20 mg QD
- Lisinopril 10 mg QD

Current Presentation, cont.

- A1C is 8.2% and FPG averages ~ 119 mg/dL
- At his physician's request he recorded his glucose values which showed modestly increased post-lunch and pre-bedtime glucose values.
- He is concerned about hypoglycemia, especially since he lives alone and has had 3 documented instances of hypoglycemia over past year.
- Also concerned about recent weight gain (8 lbs), which seems to have also worsened over time..


Limitations of Human Regular Insulin

Slow onset of action

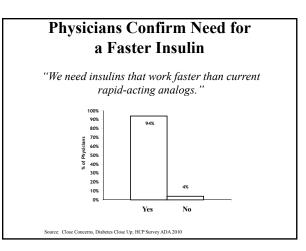
- Requires inconvenient administration:
 20 to 40 minutes prior to meal
- Risk of hypoglycemia if meal is further delayed
- Mismatch with postprandial hyperglycemic peak

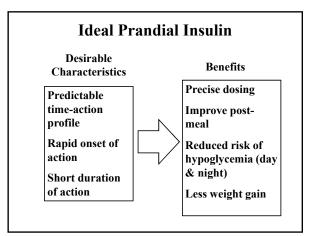
· Long duration of activity

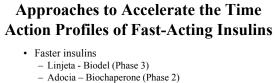
- Up to 12 hours' duration
- Increased at higher dosages
- Potential for late postprandial hypoglycemia

Clinical features of Rapid-acting Analogues

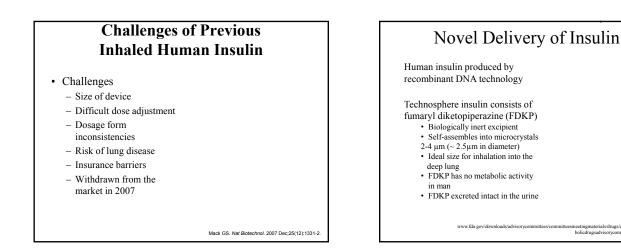
- · Insulin profile more closely mimics normal physiology
- Convenient administration immediately prior to meals
- Faster onset of action
- · Limit postprandial hyperglycemic peaks
- Shorter duration of activity
 - Reduced late postprandial and nocturnal hypoglycemia
 - But more frequent late postprandial hyperglycemia
- Need for basal insulin replacement revealed

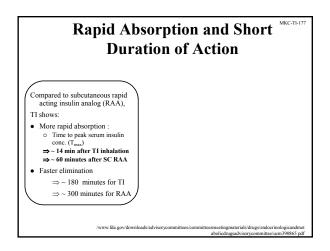

Comparing 2 Methods of Stepwise Prandial Insulin Intensification

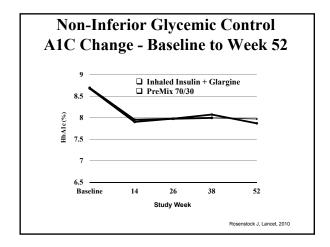

Characteristic	SimpleSTEP	ExtraSTEP
Basal insulin titration	Based on average of 3 pre-bre	akfast plasma glucose reading
Prandial dose addition (every 12 weeks, if needed)	Added to perceived largest meal	 Added to meal with highes postmeal plasma glucose increase
Prandial insulin titration	Based on <u>PREMEAL</u> plasma glucose	Based on <u>POSTMEAL</u> plasm glucose
SMBG	<u>3 × 4-point profiles</u> • Before each meal • Bedtime	3 × 6-point profiles • Before each meal • 2 h after each meal

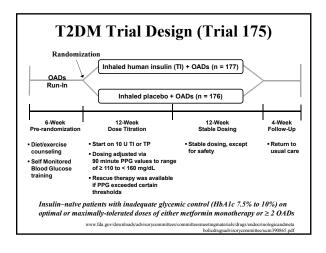

STEPwise Study Conclusions

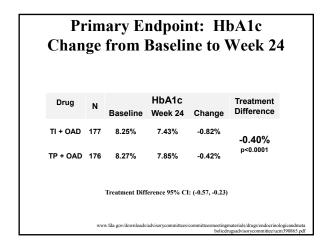
- Overall reduction in A1C of 1.2% was achieved with the addition of prandial insulin.
- Greatest A1C reductions were achieved with the first and second bolus injections.
- Improvement in glycemic control was comparable in both groups.
- Number of hypoglycemic episodes increased with increasing number of prandial injections.
- Basal-bolus treatment can be introduced in a more patientfriendly approach, using simple stepwise addition of prandial insulin.

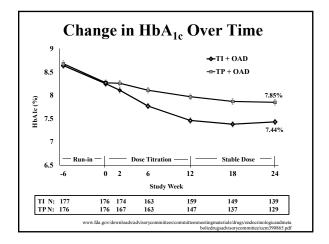

Meneghini, et al. Endocr Pract. 2011;17:727-736




- Faster-acting Aspart Novo Nordisk (Phase 3)
- Co-formulate with hyaluronidase
- Halozyme (Phase 4)
- Warming the infusion site
 InsuPad- InsuLine Medical
- Alternate Routes
 - Inhaled Insulin: Afrezza-MannKind (FDA Approved)
 - Intra-dermal: Micro-needle infusion sets-BD
 - Intra-peritoneal: DiaPort-Roche







- Indications:
 - A rapid-acting, pre-meal time insulin for patients with Type 1 and 2 diabetes.
- Place in therapy:
 - An inhaled alternative to vial and syringe for meal-time insulins. Type 1 diabetes patients wtill need a long-acting insulin in addition to prandial insulin.

Adverse Effects		
Inhaled Insulin vs. Placebo vs. Non-placebo In Type 1 DM patients		
Headache: 4.7% [2.8%]		
Cough: 29.4% [4.9%]		
Throat pain / irritation: 5.5% [1.9%]		
Bronchitis: 2.5% [2.0%]		
Urinary tract infection: 2.3% [1.9%]		

Safety

- Well tolerated
- Most common adverse events were cough and hypoglycemia
- Small non-progressive, clinically insignificant changes in pulmonary function
- Significant reduction in the risk of mild, moderate and severe hypoglycemia compared with SC insulins
- No increased cardiovascular risk
- No increased cancer risk observed

Limitations / Contraindications

Limitations:

- Inhaled insulin is not a substitute for long-acting insulin.
- Not recommended for the treatment of diabetic ketoacidosis
- Not recommended in patients who smoke or who have stopped smoking in last 6 months.

Contraindications:

- During episodes of hypoglycemia
- In patients who have chronic lung disease such as COPD or asthma www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/endocrinologicandmet

mmittees/committeesmeetingmaterials/drugs/endocrinologicandmeta bolicdrugsadvisorycommittee/ucm390865.pdf

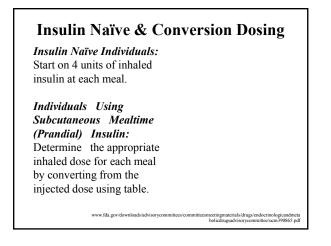
Warnings and Precautions

- · Decline in pulmonary function observed over time
- Incidence of lung cancer was observed in controlled and uncontrolled trials
- More patients using inhaled insulin experienced ketoacidosis
- · Life-threatening hypokalemia

www.fda.gov/downloads/advisor

Black Box Warning

- Acute bronchospasms reported in patients with asthma and COPD using inhaled insulin.
 - REMS established to ensure benefits outweigh risk
- Contraindication in patients with chronic lung disease
- Before initiating inhaled insulin all patients need detailed medical history, PE and spirometry to identify potential lung disease


www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/endocrinologicandmeta holicdrugsadvisorycommittee/uem300865.pdf

Monitoring Parameters

- Efficacy Monitoring:
 - Blood glucose, A1C
- Toxicity Monitoring:
 - Pulmonary function tests before initiating, after 6 months of therapy and annually, even in absence of pulmonary symptoms.
 - Fluid retention and heart failure with concomitant use of thiazolidinediones
 - Hypokalemia

www.fda.gov/downloade/advisory/

Mealtime Dose Adjustment

- Adjust the dosage of inhaled insulin based on the individual's metabolic needs, blood glucose monitoring results and glycemic control goal.
- Dosage adjustments may be needed with changes in physical activity, changes in meal patterns, changes in renal or hepatic function or during acute illness
- Carefully monitor blood glucose control in patients requiring high doses of inhaled insulin. If blood glucose control is not achieved with increased inhaled doses, consider use of subcutaneous mealtime insulin.

Switching from SC Pre-mixed Insulin:

- Estimate the mealtime injected dose by dividing half of the total daily injected pre-mixed insulin dose equally among the three meals of the day.
- Convert each estimated injected mealtime dose to an appropriate inhaled dose using chart.
- Administer half of the total daily injected pre-mixed dose as an injected basal insulin dose.

Clinical Case Scenario

- A 58 y/o man with T2DM of 6 yrs duration presents to his primary care provider for follow-up.
 - History of HTN, mixed dyslipidemia, obesity
 - Recently widowed, but children live nearby
 - Physically active with regular exercise at least 4 times /week for 30-45 minutes daily. Tennis at least once each week
- He is currently taking metformin, sitagliptin and insulin glargine and not at goal

Clinical Case Scenario, cont.

- A1C is 8.2% and FPG averages $\sim 119~mg/dL$
- At his physician's request he recorded his glucose values which showed modestly increased post lunch and pre-bedtime glucose values.
- He is concerned about hypoglycemia, especially since he lives alone and has had 3 documented instances of hypoglycemia over past year.
- Also concerned about recent weight gain (8 lbs), which seems to have also worsened over time.

Current Labs & Medications

Labs:

- Blood pressure: 136/85 mmHg
- BMI: 33.5
- LDL-C: 80 mg/dL
- TC: 182 mg/dL
- eGFR: 50 mL/min/1.73 m²

Medications

- metformin 1,000 mg BID
- sitagliptin 100mg QD
- glargine insulin 47 U SC
- atorvastatin 20 mg QD

Conclusions

- Many type 2 diabetes patients will require insulin for glycemic control
- When FPG is at goal, but A1C is elevated, PPG needs to be assessed
- Multiple options for addressing elevated PPG but ultimately many patients may require prandial insulin
- Wide range of prandial insulins are available for both SC and inhaled delivery
- · Hypoglycemia can be minimized and treated

More Conclusions

- Inhaled insulin is indicated for use as meal time insulin in patients with type 1 and type 2 diabetes
- Inhaled insulin has quicker onset and shorter duration than other rapid-acting insulins resulting in improved postprandial control with less risk of hypoglycemia and weight gain
- Adding 3 x daily inhaled insulin to existing oral therapy is generally more effective over a 12-24 week period than adding a second oral agent taken once or twice a day
- Should be avoided in smokers, patients with chronic pulmonary disease and patients with bronchospasm or asthma
- Most suitable for patients with A1C levels that remain elevated after FPG have been controlled with a basal insulin